Fast Numerical Integration of Relaxation Oscillator Networks Based on Singular Limit Solutions - Neural Networks, IEEE Transactions on

نویسندگان

  • Paul S. Linsay
  • DeLiang L. Wang
چکیده

Relaxation oscillations exhibiting more than one time scale arise naturally from many physical systems. When relaxation oscillators are coupled in a way that resembles chemical synapses, we propose a fast method to numerically integrate such networks. The numerical technique, called the singular limit method, is derived from analysis of relaxation oscillations in the singular limit. In such limit, system evolution gives rise to time instants at which fast dynamics takes place and intervals between them during which slow dynamics takes place. A full description of the method is given for a locally excitatory globally inhibitory oscillator network (LEGION), where fast dynamics, characterized by jumping which leads to dramatic phase shifts, is captured in this method by iterative operation and slow dynamics is entirely solved. The singular limit method is evaluated by computer experiments, and it produces remarkable speedup compared to other methods of integrating these systems. The speedup makes it possible to simulate large-scale oscillator networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast numerical integration of relaxation oscillator networks based on singular limit solutions

Abstract-Relaxation oscillations exhibiting more than one time scale arise naturally from many physical systems. When relaxation oscillators are coupled in a way that resembles chemical synapses, we propose a fast method to numerically integrate such networks. The numerical technique, called the singular limit method, is derived from analysis of relaxation oscillations in the singular limit. In...

متن کامل

PFC / JA - 96 - 35 Fast Numerical Integration of Relaxation Oscillator Networks Based on Singular Limit Solutions

Relaxation oscillations exhibiting more than one time scale arise naturally from many physical systems. This paper proposes a method to numerically integrate large systems of relaxation oscillators. The numerical technique, called the singular limit method, is derived from analysis of relaxation oscillations in the singular limit. In such limit, system evolution gives rise to time instants at w...

متن کامل

Texture segmentation using Gaussian-Markov random fields and neural oscillator networks

We propose an image segmentation method based on texture analysis. Our method is composed of two parts. The first part determines a novel set of texture features derived from a Gaussian-Markov random fields (GMRF) model. Unlike a GMRF-based approach, our method does not employ model parameters as features or require the extraction of features for a fixed set of texture types a priori. The secon...

متن کامل

Phase locking in networks of synaptically-coupled McKean relaxation oscillators

We use geometric dynamical systems methods to derive phase equations for networks of weakly connected McKean relaxation oscillators. We derive an explicit formula for the connection function when the oscillators are coupled with chemical synapses modeled as the convolution of some input spike train with an appropriate synaptic kernel. The theory allows the systematic investigation of the way in...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998